Robert Pfeffer

Molehills in QGIS

Relief Representation in Molehill Style
Based on Digital Elevation Data

‘Molehills’ are an ancient type of relief depiction commonly found in maps of the 16th to 18th
centuries and, inspired by these, in maps of the fantasy genre. Molehills lend themselves where
a certain antique aesthetic is desired, while geographical accuracy is not a priority. This tutorial
explains how hills prepared as SVG graphics can be automatically placed on the map using
downloaded elevation data with a little extra work in QGIS.!

This is essentially done in six steps:
I. Download of the elevation data,
II. Conversion of the elevation map into a steepness map,
III. Derivation of medium and high mountain areas from the steepness map,
IV. Creating source layers and target layer for the hill points,
V. Generating points for different scales and

VI. Representation of the points by hill graphics.

1Tt has been tested in QGIS 3.28 and 3.34. — I did not programme the Python scripts used here on my own, as I am
not familiar with it. ChatGPT was a great help!

1. Download of the Elevation Data

First, we need an elevation map for the area in question. For this we can use the OpenTopog-
raphy DEM Downloader plugin and download Copernicus 90 data, for example. As the server
only ever releases limited volumes, the data may have to be downloaded in chunks; in the ex-

ample below, this is done in 5° wide strips:

raphy DEM Downloader

»
Parameters | Log OpenTopography DEM
Select DEM to download Downloader
Copernicus Global DSM 90m A This tool will download DEM for the extent
defined iser, from OpenTopography ke
Define extent to download (https://opentopography.org/)
0,8,25,75 [EPSG:4326] M As of Jan 2022, APT key is required for al
Enter your API key or use existing one below DEMS.
Output Raster bee
=ve to temporary f Developed by: Kyaw Naing Win
v | Open output file after running algorithm Version: 2
Date: 2023-02-27
change log ver2:
-EU DTM and GEDI L3 Grid are added into the
DEM list
- Errors returned from the OpenTopography |+
0% Cancel
Advanced * | |Run as Batch Process. . Run Close
TSN N T

The many different layers arising from this should be merged into one layer before further
processing. If QGIS reaches its performance limits due to the large amount of data, you may
have to do with several, as few layers as possible. The function for merging can be found in the
menu under Raster —> Miscellaneous —> Merge:

) Merge (2 Merge

Parameters | Log
Input layers
0inputs selected
Grab pseudocolor table from first layer
Place each input file into a separate band
Output data type
Float32 -
P Advanced Parameters
Merged
V| Open output file after running algorithm
GDAL/OGR console call

Invalid value for parameter 'Tnput layers'

0% Cancel

Advanced ~ | Run as Batch Process. Run Close Help

Parameters | Log

4 | mmputlayers

v COP9D-01.tif [EPSG:4326]
V| COP90-02.tif [EPSG:4326]
v COP30-03.if [EPSG:4326]
Vv COP9D-04.tif [EPSG:4326]
W COP9D-05.tif [EPSG:4326]

v COP90-06.tif [EPSG:4326]
COP90-07.tif [EPSG:4326]
COP90-08.tif [EP5G:4326]
COP90-09.tif [EPSG:4326]
COP90-10.tif [EP5G:4326]
COPS0-11.tif [EP5G:4326]
COP90-12.tif [EP5G:4326]
Relief 50 [EPSG:4326]
Steilheit Ost Il [EPSG:4326]
Steilheit Ost | [EPSG:4326]
Steilheit West [EPSG:4326]
Steilheit klein [EP5G:4326]

Advanced -

Run as Batch Process.

Select Al
Clear Selection
Toggle Selection

Add File(s).
Add Directary...

oK

Run Close Help

II. Conversion of the Elevation Map into a Steepness Map

Now we have a nice elevation map, which, however, isn’t much use—as we don’t wish to seed a
plain with hills just because it’s a high plain, whereas conversely we want to depict coastal
mountains even if they don’t rise much above zero. So what we need instead is a map showing

not the terrain’s elevation, but its steepness.

To do this, we use the GRASS GIS function r.slope.aspect. Under Advanced parameters in the
function’s window, only the tick behind ‘Slope’ must remain, all others can be removed. I have
selected 4 as the multiplier; other values are certainly just as possible.

(3 rslope.aspect

v
Parameters | Log r.slope.aspect

Elevation Isyers of slope, aspect

artial derivatives from a

" DEM West [EPSG:4325] -
Format for reporting the slope [optional]
degrees ~
Type of output aspect and slope layer [optional]
FCELL A
V| Do not align the current region to the slevation layer
Compute output at edges and near NULL values
Create aspect as degrees dockwise from North (azimuth), with flat = -9999
Multiplicative factor to convert elevation units to meters [optional]
Hloooooo =
Minimum slope val. (in percent) for which aspect is computed [optional]

0,000000 =

p Advanced Parameters
Slope [optional]
| Open output file after running algorithm
Aspect [optional]
Open output file after running algorithm

Profile Aurvahire fantinnall

0% Cancel

Advanced ~ | |Run as Batch Process... Close Help

This results in a map no longer showing how high the terrain is, but how steeply rugged it is.
Note the high plains of Spain and Morocco, for example: they are no longer grey (for being
high), but black (for being plain).

To ease further processing, we
first reduce the graphic to one

(3) Save Raster Layer as...

Output mode '® Raw data Rendered image

Format GeoTIFF - Create VRT
twentieth of its hitherto size by | riname
right-clicking on the layer, | Lajername
followed by —> Export —> Save CRS EPSG:4325 - WGS 84 -

as.... In the window that opens I -
now, we remove one zero from
each row and column and divide

North | 75,000416667

West

the remainder by two. Under File
name we select a storage location
and save the graphic as a new

-15,000000000

Calculate from

South |25,000416667
Layer hd

Current Layer Extent

Layout Map =

East |15,000000000

Bookmark =

Map Canvas Extent

layer (see right).

w Resolution (current: layer)
However, this reduced map is
still too fine-grained for further
use, i.e. vectorisation. We there-
fore apply a Gaussian blur to it by
using the Gaussian filter from
the SAGA tools?; in this example, ‘ol
a radius of 15 seemed appropri-
ate (see next page).

Horizontal 0,0 ayer Resolution

Vertical |0,0

@) Columns 36008 Rows |60000 Layer Size

v Create Options

Profile | Default

v | Add saved file to map OK Cancel Help

2 QGIS 3.28 seems to be the last version still supporting SAGA tools out of the box. QGIS 3.34 already requires the
“Processing Saga NextGen Provider” plugin and its being set up under Settings —> Options —> Processing —>
Provider.

& Gaussian Filter

P
{2} Gaussian Filter

Parameters

Log
Grid

B steilheit Kein [EPSG:4326) -
Kernel Radius

15} =
Standard Deviation

50,000000 s
Filtered Grid [optional]

V' Open output file after running algorithm

0% Cancel

Advanced ~ | |Run as Batch Process.

v T8 Quickosm
J v & saca

II1. Derivation of Medium and High Mountain Areas from the Steepness Map

Now the areas covered by low and high mountains must be found and extracted as polygons.
To do so, we use the GDAL function Contour polygons, which is genuinely intended for contour
lines. In this example, an interval value of 22 leads to suitable results:

Processing Toolbox

#n' l"' o,

contour

b (Y Recently used
* () Mesh
Export contours
~ & DAL
~ Raster extraction
Parameters Log o Contour

() Contour Polygons

& Contour Polygons
v @ GRASS
=" Fitered Grid [EPSG:4326] - v Raster]
@ r.contour

Input layer

Band number @ r.surf.contour

Band 1 (Gray) - - Vector (v.)
& wlidar.growing
v & SAGA Next Gen
¥, 000000 = * toolchains
@ Contour lines from poir
~ Vector <->raster
0,000000 : & contour lines

Interval between contour lines
Offset from zero relative to which to interpretintervals [optional]

Attribute name for minimum elevation of contour polygon [optional]
ELEV_MIN
Attribute name for maximum elevation of contour polygon [optional]
ELEV_MAX

p Advanced Parameters

Contours

0% Cancel

Advanced ~ | |Run as Batch Process... Run Close Help

|
|
ﬁﬂ! °‘3,$-";

Now we have three polygons on the newly created layer: one extends up to the map’s edges and
covers all relatively flat areas including the seas; we can delete this one. What remains are the
two polygons for medium and high mountain areas. If there is an additional one for the steepest
peaks, we can also delete it if it’s negligibly small, or we can start the procedure again with a
value higher than 22. (If there are even more polygons, the value was too low anyway.)

4

IV. Creating Source Layers and Target Layer for the Hill Points

We allocate the two remaining polygons to two layers, which we call “Mittelgebirge” (‘medium
mountains’) and “Hochgebirge” (‘high mountains’)s. In addition, we create another vector
plane called “Gebirgspunkte” (‘mountain points’), whose geometry consists of points. To this
layer the following fields need to be added, either at the layer’s creation or later in its properties
(except the field “id” being already existent, but useless):

(%) Layer Properties - Gebirgspunkte — Fields

£ L=bels S~ Name Alias Type Type name Length Precision Comme
123 7 |id Integer (64 bit) | Integera4 10]

@ Masks

abc 1|5VGE Text (string) String 10]
N 30 View

" 123 7 Massstab Inteqger (64 bit) |Integera4 10 0

>

: Diagrams abc 3| Kategorie Text (string) String 10 i

133 4 |Versatz Integer (64 bit) |Integera4 10 i

Fields

1.2 5| Skalierung Decdmal {(double) Real 10 3
! Attributes Form

3 As I originally puzzled out this method and wrote these scripts just for myself, most of the terms used are in Ger-
man. You can of course translate them, but will then have to change the functions in their corresponding places,
too.

In the following, the aim is to fill the areas of the two polygons with randomly arrayed points,
which in turn are represented by randomly selected SVG graphics. The first two layers serve as
source layers from which the points are generated, and the third one is the target layer in which
they are saved.

This is done using a Python function4, which is provided in two variants—one for the medium
and one for the high mountains (see appendix)—and which essentially does the following:

1. draw a grid over the entire extent of the polygon,
2. randomly place one point in each box of the grid,
3. delete all points that do not end up inside the polygon,

4. delete all points that are too close to the geometry of certain other layers from which
they should keep away (e.g. rivers, coastlines, ...),

5. assign an attribute value of +1 or -1 to all points that are still too close to the right or
left of that geometry so that they can be moved aside later (see below for the sense and
nonsense of this duplication),

6. randomly assign each point a file name from “MHo1.svg” to “MH63.svg” (these are the
63 molehill graphics from the prepared set being enclosed) and

7. assign a random scaling factor of 0.9 to 1.1 to each point in order to add some additional
variety to the map design.

The purpose of points 4 and 5 is to prevent the hills from coming too close to the geometry of
certain other layers (which must be entered by name in the function, see appendix). In point 4,
a buffer is drawn around that geometry in order to then delete all points that lie within it. As
our hills are more wide than high, it would actually be nice to have a buffer that is also more
wide than high. However, QGIS doesn’t seem to provide for this. Moreover, if degrees are used
as map units (as is the case here), these are more high than wide in European latitudes, and so
the buffer is exactly the opposite of what it should be. The only solution I could think of is to
check again in a further step 5 which points would still be in the buffer if they were a little
further to the right or to the left (by half a buffer width). A positive or negative attribute value
is then assigned to these points, which later can serve as a reference for a lateral marker offsets.
(This method has one advantage: points that would otherwise be deleted are retained and are
only shifted a little towards the others.)

In the Layer Styling of both source layers (high and medium mountains), we now select Ge-
ometry generator as the fill, Points as the geometry type and Millimetres as the units (in this
example). Next to the expression field, we press the € button to open the Expression Dialogue.
There we first select the Function Editor, create two new function files called “Random points
high” and “Random points medium” (or any other name) and insert the code of the two func-
tions for high and medium mountains into these files (see appendix). We can do this for both
layers in one, as the Function Editor’s content is available in both layers.

4 The ‘historic nucleus’ of this function is a code published by Rob Jones at https://impermanent.io/2017/05/
05/generative-pseudo-random-polygon-fill-patterns-in-qgis/ (last accessed on 02/02/2014). I'd like to take this
opportunity to credit him for this.

5 See VI.4 below.

https://impermanent.io/2017/05/%2005/generative-pseudo-random-polygon-fill-patterns-in-qgis/
https://impermanent.io/2017/05/%2005/generative-pseudo-random-polygon-fill-patterns-in-qgis/

= Expression Builder
Expression Function Editor

= default L

" Zufallspurkte_hoch o

» Zufalspunkte_mittel

[*HEH

a
i

1 »
P save and Load Functions
#||= b Help

OK Cancel Help

Now we switch to the Expression tab, and now it becomes layer-specific: Here we insert the
expression that will call the function as soon as the layer is made visible. For now, the following
expressions may suffice to create an appealing point pattern at a scale of 1:15000000:

Zufallspunkte_hoch(0.7, 0.35, 0.35, 33, 42, 0.25, $scale)
Zufallspunkte_mittel(0.53, 0.3, 0.48, 33, 42, 0.25, $scale)

Please note that “Zufallspunkte_hoch” and “Zufallspunkte _mittel” (‘Random points high’ and
‘Random points medium’) relate to the function names defined in the code (see appendix) — so
if you prefer to alter them, you’ll have to alter them there as well. The parameters in the brack-
ets have the following meaning in the upper of the two examples (see also the comments at the
beginning of both functions in the appendix):

— “0.7” and “0.35” are the width and height of the individual grid boxes, measured in map
units, in this case degrees. If you take twice the height for the width, this results in an ap-
proximately square box in European latitudes.

— Another “0.35” determines the degree of random scatter with which the individual point is
placed in the respective box.

— “33” and “42” are arbitrarily selectable values as random seeds for the point scattering and
for the assignment of the SVG file names. As long as this seed remains the same, the random
pattern will also remain the same. So if you don’t like the hill display, you can vary it at these
points without basically changing the points’ density.

— “0.25” determines the width of the buffer that is drawn around the geometry of the other
layers mentioned, i.e. the zone to be kept free of points.

— “$scale” passes the reciprocal value of the current scale (i.e. “15000000” for a scale of
1:15000000). This allows the above expressions to be refined later so that they take into
account the respective scale (see below).

V. Generating Points for Different Scales

The points are now created simply by making one of the source layers visible and allowing
QGIS to execute the function. This may take quite a while, and QGIS may well crash! With a
bit of luck, however, the points will then already have been generated and saved.

Although the points are generated from the source layers using the functions stored therein,
they are saved in the “Gebirgspunkte” target layer. The source layers must and should therefore
only be made visible for the purpose of generating points and then immediately made invisible
again.

Both functions are programmed to only generate points if none are present for the current
scale, yet. They are also preset to not generate points for any crooked scale, but only for scales
whose reciprocal value is divisible by 250 000, which applies, for example, to the initial scale
of 1:15000 000 selected here as well as to many of its halves. (This can of course be changed
in the functions if required, see appendix).

The points are thus created for different scales by making the source layer visible in different
scales or by scrolling through different scales when the source layer is visible. This immediately
reveals the problem that the distances passed as parameters are absolute, so that the grid boxes
and thus also the points have the same geographical distance in each scale. If you want the
points to be twice as dense at double the scale so that the visual distance remains the same,
only half the value may be passed as a parameter at double the scale. This is achieved by in-
serting a fraction using “$scale” in the numerator instead of an absolute value. (For precisely
this purpose, “$scale” is passed to the function as the last parameter). So if, for example, a
horizontal distance of 0.7 seemed appropriate at a scale of 1:15000 000—like this:

Zufallspunkte_hoch(o0.7, ...,

then you can replace this 0.7 with a fraction that gives the same result as 0.7 on the scale men-
tioned—namely 15000 000 /21428 571.4—and which, using “$scale” instead of “15000000”
and being rounded a little, reads like this:

Zufallspunkte_hoch($scale/21400000,

If the scale is doubled, “$scale” is then only half as large, which would halve the geographical
distance so that visual distance remains the same. If you now want the visual distance not to
exactly remain the same at double the scale, but to become a little bit larger again, you can add
a small summand to the parameter, which has the exact opposite effect, e.g:

Zufallspunkte_hoch($scale/21400000+1200000/$scale,

You can proceed in the same way with all other parameters that denote distances. I ended up
with the following expressions:

Zufallspunkte_hoch($scale/25000000+1200000/ $scale,
$scale/50000000+600000/ $scale, $scale/70000000+2000000/ $scale, 33, 42,
$scale/70000000+500000/ $scale, $scale)

Zufallspunkte_ mittel($scale/33000000+1200000/ $scale,
$scale/65000000+1000000/$scale, $scale/60000000+3500000/$scale, 33, 42,
$scale/70000000+500000/ $scale, $scale)

VI. Representation of the Points by Hill Graphics

Gebirgspunkte — Features Total: 5329, Filtered: 5329, Selected: 0

/ & & " VT E & D FE = & &
id VG Kategorie Massstab - Versatz Skalierung 4
3873 ALLL MHEZ.5vg hoch 7500000 MLEL 1,000
3976 ALEL MHB1.svg hoch 7500000 ML 1,100
3977 ALEL | MH43.5vg hoch 7500000 ML 1,000
3978 ALLL MHZ7.5vg hach 7500000 MLEL 1,100
3979 ALLL MHZ1.5vg mittel 15000000 -1 0,8
3980 ANLEL MHO4.swg mittel 15000000 MNAEL 0,9
3981 AL MHO1.swg mittel 15000000 ML a,9
3982 ALEL MHD9.5vg mittel 15000000 = 0,8
-~ Show All Features _ = =

All generated points are now registered in the attribute table of the ‘Gebirgspunkte’ layer,
where they differ in their respective attributes: The “SVG” column specifies which of the 63
molehill files are to be used. The “Kategorie” column shows whether the point is for high or
medium mountain ranges. The “Massstab” (‘Scale’) column tells you for which scale the point
was entered—the point should only be visible for this scale later on. “Versatz” (‘Offset’) indi-
cates a possible offset to the east or west for some of the points: For example, the points labelled
“-1” above are too close to the west bank of a river and should therefore be shifted still a little
further to the west. Finally, the last column provides a scaling factor which is “0.5” for points
that are ‘sandwiched’ between rivers or coastlines (see appendix), “0.8” for points to be dis-
placed from rivers or coastlines (see “Versatz” column) and a random value of 0.9 to 1.1 for all
other points (in tenths of a millimetre increments). If necessary, this can be changed in the
function code (see appendix).

1. Scale-Dependent Visibility | iz stying B
of the Individual Points Gebirgspunkte v
So let's first make sure that each & | = Rrule-based =
point is only displayed for the scale | . . . Regd —
it has been created for or, more bis 1:3750000 @map_scale > 50001 AND @map_scale...

. . (abc) v j bis 1:7.500.000 @map_scale » 3750001 AND @map_sc...
precisely, for a range from this - V| 7 bis 1:15.000.000 @map_scale > 7500001 AND @map_Sc...
scale to the next. Rule-based [y, V| 7 bis 1:30.000.000 @map_scale > 15000001 AND @map_s...
symbology is ideal for this: -

In our example, points were generated for the four scales of 1:3750000, 1:7500000,
1:15000000 and 1:30000

Layer Styling .
000. Accordingly, we define
Gebirgspunkte four display rules for the
7 [d] edtrue ranges.fron} one scale to the
< next, i.e. initially from an
o bis 1:3750000 arbitrary lower limit of 50 001
LRI cle <= 3750001 AND "Massstab” = 3750000 [l to the scale-reciprocal of
(abc] 3750000, then from 3750

Else Catch-all for other features 000 to 7500000 and so on.

For each of these rules, an expression is entered under Filter that regulates the visibility of the
points. For the rule “bis 1:3750000” (‘up to 1:3750000’), for example, it reads:

@map_scale > 50001 AND @map_ scale <= 3750000 AND "Massstab" = 3750000

This means: If the current scale’s reciprocal value is greater than 50001 and at the same time
less than or equal to 3750000, and if the column “Massstab” (‘Scale’) shows a value of
“3750000” for the respective point, then this point will be displayed; if not, then not.

The rules for the other scale areas are to be formulated accordingly.

2. Assigning the SVG Files Layer Styling =L

If we double-click on the individual Eetomankis -

rule and then click again on SVG
Marker, we will find a field at the
bottom where a path to an SVG file
can be entered. However, as we don’t
want to use one and the same hill
graphic for all of the points, but ra-
ther assign each point the graphic
that is specified for it in the attribute
table, we must instead press the ¢

4 | EditRule

- 7 Marker 5

SVG Marker

. . Stroke width | 0, 100000 Millimeters > | 4.
button to the right of the field in or-
der to enter an expression such as Rotation |0,00 * GRE
the following: x |0,000000 |%
. Offset Millime ters - | A€l
'd:/Kartografie/Signaturen/ y |0,000000 %
Maulwurfshiigel/' || "SVG" — -| &
Anchor point
HCenter = (E

It first returns the path to the SVG
file, followed by what is shown in the
“SVG” column, i.e. the file name, and
hence describes a complete path
such as “D:\Cartography\Signa-
tures\Molehills\MH31.svg”.

P SVG browser

P Dynamic SVG parameters

v Enable symbal layer ‘E, Draw effects

3. Scaling the Hill Graphics Depending on the Scale—and the Latitude

After double-clicking on one of the rules and single-clicking on SVG marker, we find below the
fields to set the size of the hill graphics. Here we should first set a suitable hill size for the
nominal scale of the respective rule. (We should therefore make sure that the map currently is
at this scale instead of somewhere between this scale and the next). The specified size refers to
the invisible circle that lies in the background of each hill graphic.

Once we have found an appealing map appearance, we should ensure that it is maintained even
when the map is scaled up into the area between this and the next scale. The hills should also
be scaled up in order to maintain their relative size in proportion to the rest of the map. We
can achieve this by klicking the € button and choosing Edit to open the Expression Dialogue,
where the following expression can be entered:

10

CASE
WHEN "Kategorie" = 'hoch' THEN 8 * "Skalierung" * 7500000/ $scale * (-0.021 * $y +2.1)
WHEN "Kategorie" = 'mittel' THEN 7.5* "Skalierung" * 7500000/ $scale * (-0.021 * $y +2.1)
ELSE 1

END

Its first lines mean: In the Case when the category is “high”, then the point has a size of 8mm
being scaled by the factor from the “Skalierung” column (so that the hill pattern is more var-
ied), then by a scale-dependent factor, which is exactly 1 in the nominal scale, but increases
along with the scale, and finally by the bracketed factor to the rear, which takes into account
the y-value on the map, i.e. the latitude. Since the coordinate reference systems of these layers
have degrees as map units, the distance between the hills is also given in degrees—being a unit
which becomes the longer the closer you get to the equator. Thus the map appearance becomes
somewhat more attractive if the hillsize increases to the same extent as do the degrees south-
wards. In the coordinate reference system EPSG:3034 used here, with its conical Lambert pro-
jection, the meridians diverge linearly to the south, which makes it easy to find a formula for
an equally linear enlargement of the hills (namely “-0.021 * $y +2.1”. The absolute member
was chosen so that the hills have their original size at about 50 degrees north and from there
become smaller northwards and larger southwards.)

The third line is the same for the medium mountains; they are given a basic size of 7.5 mm.
The default value of 1 in the penultimate line is only relevant if nothing is entered under “Kat-
egorie” (i.e. never).

4. Distancing the Hills from Rivers, Coastlines, etc.

The Offset section can also be found in « [0,000000 |
the place already mentioned several offset Milimeters - | 4E|
times, where instead of a fixed offset for y |0,000000 |
the hill graphics, you can also set one that is based on the entries in the “Versatz” (‘Offset’)
attribute column. To do this, we press the & button again, go to Edit and enter into the

expression editor for example:

to_string("Versatz"*0.7) || ',' || O

This expression returns an offset in the format “x,y”. The entry from the “Versatz” (‘Offset’)
column is taken as the x-value and is multiplied by 0.7 (a factor that can be freely selected).
The result is converted into a string in order to be digestible by QGIS. The concatenation con-
tinues with a comma as separator and a zero as y-value.

5. Adjusting the Drawing Order for the Current Coordinate Reference System

To give the hill display a perspective impression, the two functions are already formulated such
that the hills are sorted by their y-value and that the more southerly hills are only drawn after
the more northerly ones, having the front hills cover the rear ones and not the other way round
(see appendix). This makes the map already look reasonably neat. However, the y-value used
for this is the geographic north/south value, which leads to inadequate results where north is
not (or not quite) at the top of the map: namely in the eastern and western peripheral areas,
where the meridians run diagonally towards the North Pole, and even more so in maps that
are not north-orientated at all, but are, for example, east-oriented (as was not uncommon in
the olden days).

11

To get a really neat map display, we | Layer styling &[]
need to ensure that the hills are really e -
rendered from the top to the bottom of

& | 2 Rule-based -

the maB. We can do this by ticking the
Control feature rendering order box
at the bottom of the Layer Styling and
clicking the button to the right of it.
The below window will now open, in
which we can enter the following
expression:

y(transform($geometry, 'EPSG:4326',
'"EPSG:3024"))

It causes the points to be drawn in the

Label
v] bis 1:3750000

v| 7 bis 1:7.500.000
| 7)) bis 1:15.000.000
| 7 bis 1:30.000.000

]
w| | =] 2
Refine Selected Rules =

w Layer Rendering

Rule

M

@map_scale > 50001 AND @map_scale. .
@map_scale > 3750001 AND @map_sc...
@map_scale > 7500001 AND @map_sc. .
@map_scale > 15000001 AND @map_s...

3

Symbal Levels. .

. Opacity 100,0 % =
order of their y-value, but only after
. . Layer Feature
the coordinates used in the layer Blending made |
ormal * | Mormal -
(EPSG:4326) have been transformed
. . Draw effects
into the coordinates on the screen .
v | Control feature rendering order * s

(EPSG:3024).

»! Define Order

Expression Asc | Desc MULLs handling
1| pitransform{Sgeometry, EP5G:4326, BPSG:3024)) o £ | Descending = |MULLsLast ~
2 ud £ |Ascending * |NULLsLast =

0K Cancel Help

6. Setting the Colour and Line Width of the Hills

The final step is to set the colours and line widths of the hill graphics. These are not fixed in the
SVG files, but are left open as variables (parameters) whose value can be determined by QGIS
(so-called ‘parameterised’ SVG files). This means that we can adapt the appearance of the hill
graphics in QGIS to the requirements of our map.

In order to activate the necessary fields hitherto greyed out in QGIS, we have to pretend we
still want to use one and the same graphic for all of the hills and enter the path to a specific hill
file into the field marked red on page 10 above:

rafie/Signaturen/Maulwurfshiigel MH40.5vg & .|| 4EL
(Which file we choose doesn’t matter, as it has no effect, but is still subject to data-defined

override.)

12

Colours and line widths can now be set up using the following fields:

Layer Styling 5]
Gebirgspunkte -
& | EditRule
~ A Marker Bt
A SVG Marker
* La

4

Symbol layer type| SVG Marker

width | 6,000000 = -|
Height | 6,000000 = Ju €
Unit | Milimeters >

Fill color = @v

stroke color | (RN - <.

Stroke width | 0,350000 = | | Milimeters A E, =

If you click on the Fill colour field, a more detailed settings panel opens up, including the col-
our’s opacity. It should be noted here that QGIS thinks it is setting the opacity of the hill colour,
whereas in reality this is affecting the black shadow! This misappropriation was necessary be-
cause QGIS’ use of parameterised SVG files is still somewhat deficient at present.
Layer Styling 3
Gehirgspunkte -

{\/ 4 | EditRule > SelectFill color

s\ D o] ¢
v -
v I % |%
v -
R R
- -
c I 2 3
hd -
B 29 2
Opacity = 0% =

HTML notation | #ffff

Current

> P

Old

13

63 ,Maulwurfshiugel' zur Verwendung auf Landkarten
63 '‘Molehills’ for use in maps

a2 SSAL WA N
™ 4 N i N
™~ /A A
e N I 4 \
T~ AL Ve
e e @ A N\
o~ JAL A
— e D

Hinweis: Damit diese Datei mit dem Skript ,Maulwurfshiigel_zerlegen.py‘ aufgeteilt und die einzelnen Hiigel als Dateien
,MHo1.svg’ bis , MH63.svg‘ abgespeichert werden konnen, miissen die unsichtbaren Kreise im Hintergrund der Hiigel
unverandert bleiben!

Note: To split this file with the script ‘Maulwurfshiigel _zerlegen.py’ and save the individual hills as files ‘MHo1.svg’ to
‘MH63.svg’, the invisible circles in the background of the hills must remain unchanged!

Appendix: Functions and Scripts with Commentary

Zufallspunkte_hoch.py
(*Random_points_high.py’)

This is the function for generating the points for the high mountain molehills, to be used in the source layer “Hochgebirgspunkte” (‘high mountain
points’).

from ggis.core import *

import math

import random

from ggis.utils import ggsfunction

@ggsfunction (args='auto', group='Custom')
def [Zufallspunkte_ hoch|(
xInterval, yInterval, rand,
position_seed, filename_ seed,
buffer distance, scale,
feature, parent):
Generiert 'hoch'-Kategorie-Punkte im Gebirge, mit Pufferung und Versatz-Logik,
optimiert durch vorab vereinheitlichte Wasser-Puffer (einfach + erweitert).

LIRIRT]

0) Initialisierung

random. seed (position_seed)

massstab = |[round (float (scale))

layer = QgsProject.instance () .mapLayersByName (['Gebirgspunkte']) [0]

1) Abbruch, wenn schon Punkte vorhanden oder MaBstab nicht gerade teilbar
exists = layer.getFeatures (

QgsFeatureRequest () .setFilterExpression (

15

Kommentiert [RP1]: Name of the function. The calling
expression in the expression dialogue relates to this.

Kommentiert [RP2]: This is necessary as QGIS some-
times does not pass the scale exactly, but with crooked
decimal places.

Kommentiert [RP3]: Specifies the target level. Change
if required.

f"Massstab = {massstab} AND Kategorie = 'hoch'"

)
if len(list(exists)) > 0 or massstab % 250000/ != 0:
return None

2) Punkte im Polygon erzeugen

box = feature.geometry () .boundingBox ()
countX = math.ceil (box.width() / xInterval)
countY = math.ceil (box.height() / yInterval)

dx = countX*xInterval - box.width()
dy = countY¥*yInterval - box.height ()
x0 = box.xMinimum () - dX/2

y0 = box.yMinimum() - dY/2

points = []

for 1 in range (countX+1l) :
for j in range (count¥+1l):
x = x0 + i*xInterval + rand * random.uniform (0, xInterval)
y = y0 + j*yInterval + rand * random.uniform(0, yInterval)
pt = QgsPointXY(x, vy)
if feature.geometry () .contains (QgsGeometry.fromPointXY (pt)) :
points.append (pt)

3) Wasser-Layer einmalig puffern (einfach + erweitert)
wasser = [|'Fliisse 50 Ausschnitt', 'Seen 50', 'Kiistenlinie 50 Ausschnitt'|]
simple bufs, ext bufs = [], []
for name in wasser:
lyr = QgsProject.instance () .mapLayersByName (name) [0]
for feat in lyr.getFeatures():
g = feat.geometry() .simplify (0.05)
simple bufs.append(g.buffer (buffer distance, 3))
ext bufs.append (g.buffer (2 * buffer distance, 3))

16

Kommentiert [RP4]: Ensures that points are only gen-
erated for scales whose reciprocal value is divisible by
250000. Change if required.

Kommentiert [RP5]: All layers from whose geometry
the hills should keep away must be entered here.

simple union = QgsGeometry.unaryUnion (simple bufs) if simple bufs else None
extended union = QgsGeometry.unaryUnion (ext bufs) if ext bufs else None

4) Punkte auBerhalb des einfachen Puffer behalten
if simple_union:
points = [
pt for pt in points
if not simple union.contains (QgsGeometry.fromPointXY (pt))

5) Sortieren fir Tiefeneffekt| Kommentiert [RP6]: Ensures that the more southerly
points.sort (key=lambda p: p.y(), reverse=True) points appear before the more northerly points. Is insuf-
ficient if the north direction is not completely vertical
(e.g. in the peripheral areas of the map or if the map is

6) SVG-Symbole und Skalierungsfaktoren vorbereiten not north-orientated); requires additional adjustment in

random. seed (filename_seed) QGIS.

svgs = [f"MH{str (random.randint ([22 , 63])) .z£f111(2) }.svg" for _ in points] Kommentiert [RP7]: Refers to the files “MH22.svg” to

skals = [round(random.uniform(0.9,1.1),1) for in points] “MH63.svg”—these are the symbols for the high moun-
tain molehills.

7) Punkte als neue Features schreiben Kommentiert [RP8]: Range of 0.9—1.1 from which the

layer.startEditing () poi.nts are assigned a random scaling factor (in tenths).
Adjust as required.

for svg, skal, pt in zip(svgs, skals, points):
f = QgsFeature (layer.fields())
f.setAttribute ('SVG', svqg)
f.setAttribute ('Massstab', massstab)
f.setAttribute ('Kategorie', 'hoch')
f.setAttribute ('Skalierung', skal)
f.setGeometry (QgsGeometry.fromPointXY (pt))
layer.addFeature (f)

8) Versatz-Logik (vereinfacht dank vorgefertigter Unions)
if simple union and extended union:
feat req = QgsFeatureRequest () .setFilterExpression (
f"Massstab = {massstab} AND Kategorie = 'hoch'"

17

neue

idx

idx_

half
step

for

_feats = list(layer.getFeatures (feat req))
scal = layer.fields () .indexOf ('Skalierung')
off = layer.fields () .indexOf ('Versatz"')

= buffer distance / 2

= buffer distance / 1.5
feat in neue feats:

pt = feat.geometry() .asPoint ()

if not pt or not extended union.contains (QgsGeometry.fromPointXY (pt)) :

continue

Eingeklemmt?
pr = QgsPointXY (pt.x() + half, pt.y())
pl = QgsPointXY (pt.x() - half, pt.y())
if simple union.contains (QgsGeometry.fromPointXY (pr)) \
and simple union.contains (QgsGeometry.fromPointXY (pl)) :
if feat.attribute(idx off) in [None, '']:
feat.setAttribute (idx_scal, [0.5)
layer.updateFeature (feat)
continue

Rechts-Versatz?
if simple union.contains (QgsGeometry.fromPointXY (
QOgsPointXY (pt.x () + step, pt.y()))):
if feat.attribute(idx_off) in [None, '']:
feat.setAttribute (idx_off, -1)
feat.setAttribute (idx _scal, 0.8)
layer.updateFeature (feat)
continue

Links-Versatz?
if simple union.contains (QgsGeometry.fromPointXY (
QgsPointXY (pt.x () - step, pt.y()))):
if feat.attribute(idx off) in [None, '']:

18

Kommentiert [RP9]: Identifies hills that are ‘sand-
wiched’ between rivers etc. on both sides.

Kommentiert [RP10]: No offset to the east or west is
entered for ‘sandwiched’ hills; instead, they are signifi-
cantly reduced in size.

Kommentiert [RP11]: Hills that are too close to the
west next to a river etc. are moved slightly westwards
and slightly reduced in size.

feat.setAttribute (idx off, 1)
feat.setAttribute (idx_scal, 0.8)]
layer.updateFeature (feat)

9) Commit
layer.commitChanges ()
return QgsGeometry.fromMultiPointXY (points)

Kommentiert [RP12]: Hills that are too close to the east
next to a river etc. are moved slightly westwards and
slightly reduced in size.

Zufallspunkte_mittel.py
(‘Random_points_medium’)

This is the function for generating the points for the medium mountain molehills, to be used in the source layer “Hochgebirgspunkte” (‘high mountain

points’). Only the specific differences to the previous function are commented on here.

from ggis.core import *
import math
import random

from ggis.utils import ggsfunction

@ggsfunction (args='auto', group='Custom')
def [Zufallspunkte mittel/(
xInterval, yInterval, rand,
position seed, filename_ seed,
buffer distance, scale,
feature, parent):
Wie Zufallspunkte hoch, aber fir Kategorie 'mittel' und zusatzlich
Hochgebirge als Hindernis. Vereint alle Puffer einmalig fir Stabilitét.

[IRIRT]

0) Initialisierung

random.seed (position seed)

massstab = round(float (scale))

layer = QgsProject.instance () .mapLayersByName ('Gebirgspunkte') [0]

19

Kommentiert [RP13]: Name of the function, relevant
for its call.

1) Abbruch, wenn schon Punkte vorhanden oder MaBstab nicht gerade teilbar
exists layer.getFeatures (
QgsFeatureRequest () .setFilterExpression (
f"Massstab = {massstab} AND Kategorie = 'mittel'"
)
if len(list(exists)) > 0 or massstab % 250000 != O:

2)
box

countX
count¥Y

dx
dy

xMin

yMin

points
for i in

3)

return None

Gitterpunkte im Polygon erzeugen

feature.geometry () .boundingBox ()
math.ceil (box.width() / xInterval)
math.ceil (box.height () / yInterval)
countX*xInterval - box.width ()
countY¥*yInterval - box.height ()
box.xMinimum() - dX/2
box.yMinimum() - dY/2

[]

range (countX+1) :

for j in range (countY+1l) :

x = xMin + i*xInterval + rand*random.uniform (0, xInterval)

y = yMin + j*yInterval + rand*random.uniform(0, yInterval)

pt = QgsPointXY(x, vy)

if feature.geometry () .contains (QgsGeometry.fromPointXY (pt)) :
points.append (pt)

Andere Ebenen einmalig puffern
layer names = ['Flusse 50 Ausschnitt', 'Seen 50', 'Kistenlinie 50 Ausschnitt',|'Hochgebirge'H

simple bufs = []

extended bufs

[]

for name in layer names:

= QgsProject.instance () .mapLayersByName (name) [0]

20

Kommentiert [RP14]: The “Hochgebirge” (‘high moun-
tain’) layer is also listed here in order to keep some dis-
tance between the medium and the high mountain
molehills.

for feat in lyr.getFeatures/():
g = feat.geometry() .simplify(0.05)
simple bufs.append(g.buffer (buffer distance, 3))
extended bufs.append(g.buffer (2 * buffer distance, 3))

simple union = QgsGeometry.unaryUnion (simple_bufs) if simple bufs else None
extended union = QgsGeometry.unaryUnion (extended bufs) if extended bufs else None

4) Punkte 18schen, die im einfachen Puffer liegen
if simple union:
points = [
pt for pt in points
if not simple union.contains (QgsGeometry.fromPointXY (pt))

5) Punkte Sortieren fiir Tiefeneffekt
points.sort (key=lambda p: p.y (), reverse=True)

6) SVG-Symbole und Skalierung vorbereiten

random.seed (filename seed)

svgs = [f"MH{str(random.randintq1,2lb).zfill(2)}.qu" for in points]
skals = [round(random.uniform(0.9,1.1),1) for in points]

7) Punkte in Ebene schreiben

layer.startEditing ()

for svg, skal, pt in zip(svgs, skals, points):
f = QgsFeature(layer.fields())

.setAttribute ('SVG', svg)
.setAttribute ('Massstab', massstab)
.setAttribute ('Kategorie', 'mittel')

.setAttribute ('Skalierung', skal)

f
f
f
f
f.setGeometry (QgsGeometry.fromPointXY (pt))
1

ayer.addFeature (f)

21

Kommentiert [RP15]: Refers to the files “MH22.svg” to
“MH21.svg”—these are the symbols for the medium
mountain molehills.

7) Ver
if simpl
al
feat

)

neue

idx_

idx

half
step

laye
for

satz-Logik (vereinfacht dank vorgefertigter Unions)
e union and extended union:

le neuen Higel-Features abfragen

_req = QgsFeatureRequest () .setFilterExpression (
f"Massstab = {massstab} AND Kategorie = 'mittel'"

_huegel = list(layer.getFeatures (feat req))

scal = layer.fields () .indexOf ('Skalierung"')

off = layer.fields().indexOf ('Versatz')
= buffer distance / 2
= buffer distance / 1.5
r.startEditing ()

feat in neue_huegel:
pt = feat.geometry () .asPoint ()
if not pt:

continue

a) nur weiter, wenn im erweiterten Puffer
if not extended union.contains (QgsGeometry.fromPointXY (pt)) :

continue

b) eingeklemmt? (beidseitig im einfachen Puffer)
pr = QgsPointXY (pt.x() + half, pt.y())
pl = QgsPointXY(pt.x() - half, pt.y())
if simple union.contains (QgsGeometry.fromPointXY (pr)) \
and simple union.contains (QgsGeometry.fromPointXY (pl)) :
if feat.attribute(idx off) in [None, '']:
feat.setAttribute (idx_scal, 0.5)
layer.updateFeature (feat)
continue

c) Seitenversatz rechts?

22

pr_shift = QgsPointXY(pt.x() + step, pt.y())
if simple union.contains (QgsGeometry.fromPointXY (pr_shift)):
if feat.attribute(idx_off) in [None, '']:
feat.setAttribute (idx off, -1)
feat.setAttribute (idx_scal, 0.8)
layer.updateFeature (feat)
continue

d) Seitenversatz links?
pl shift = QgsPointXY(pt.x() - step, pt.y())
if simple union.contains (QgsGeometry.fromPointXY (pl shift)):
if feat.attribute(idx_off) in [None, '']:
feat.setAttribute (idx_off, 1)
feat.setAttribute (idx scal, 0.8)
layer.updateFeature (feat)

8) Anderungen iibernehmen
layer.commitChanges ()
return QgsGeometry.fromMultiPointXY (points)

Maulwurfshiigel_zerlegen.py
(*Split_molehills.py’)

If you want to modify the supplied molehills, it is best to do so in the file “Maulwurfshiigel.svg” (‘Molehills.svg’), where they are all together. They
can then be split into the 63 individual files “MHo1.svg” to “MH63.svg” using this Python script. The individual hills are recognised by the invisible

circle in the background of each hill. These circles must therefore remain untouched when editing the hills.

This script is executed simply by double-clicking under Windows, whereby it must be located in the same directory as the “Maulwurfshiigel.svg” file.

Dieses Skript zerlegt die Datei ,Maulwurfshiigel.svg"“ in die einzelnen Dateien ,MHOl.svg“ bis ,MH63.svg"“.

Voraussetzung ist allerdings, dass sich im Hintergrund der 63 Hiigel unveradandert die 63 unsichtbaren Kreise mit den
Pfadnummern 1-63 befinden!

23

This script splits the file “Maulwurfshiigel.svg” into the individual files “MHOl.svg” to “MH63.svg”. However, the
prerequisite is that the 63 invisible circles with the path numbers 1-63 remain unchanged in the background of the 63
hills!

from xml.etree import ElementTree as ET
import re

import os

import shutil

def find existing svgs(base dir):

LIRIRT]

Findet existierende MH##.svg Dateien im angegebenen Verzeichnis.

existing svgs = [f for f in os.listdir (base dir) if os.path.isfile(os.path.join(base dir, f)) and
f.startswith ("MH") and f.endswith(".svg") and f[2:4].isdigit ()]

return existing svgs

def create new_alt directory(base dir):

LIRIRT]

Erstellt ein neues alt##-Verzeichnis im angegebenen Basisverzeichnis.
wun
existing alts = [d for d in os.listdir (base dir) if os.path.isdir (os.path.join(base dir, d)) and
d.startswith("alt")]
highest num = 0
for dir_name in existing alts:
try:
num = int(dir name[3:])
highest num = max(highest num, num)
except ValueError:
continue
new dir name = f"alt{highest num + 1:02}"
new dir path = os.path.join(base dir, new dir name)
return new_dir name, new_dir_ path

24

def move svgs_to_alt dir(svgs, alt dir):

LIRIRT]

Verschiebt die gegebenen SVG-Dateien in das angegebene Verzeichnis.
for svg in svgs:
shutil.move (svg, alt dir)

Uberpriife, ob zu sichernde SVG-Dateien existieren

base dir = ". # Aktuelles Verzeichnis als Basisverzeichnis
existing svgs = find existing_ svgs (base_dir)

if existing_svgs:
Erstelle ein neues alt##-Verzeichnis, wenn notwendig
new dir name, new dir path = create new alt directory(base dir)
os.makedirs (new_dir path, exist ok=True)
Verschiebe existierende MH##.svg Dateien
move svgs to alt dir(existing svgs, new dir path)
print (f"SVG-Dateien nach {new_dir name} verschoben.")
else:
print ("Keine SVG-Dateien zum Verschieben gefunden.")

Die SVG-Namespace-Definition
SVG NAMESPACE = "{http://www.w3.0rg/2000/svg}"
ET.register namespace("", "http://www.w3.0rg/2000/svg")

Der Dateiname der urspringlichen SVG-Datei
original file name = "Maulwurfshiigel.svg"

def extract paths(svg content):

wuon

Extrahiert Pfade aus der SVG-Datei und gruppiert sie nach ihren IDs.

wuon

paths = {}
tree = ET.ElementTree (ET.fromstring(svg _content))

25

for path in tree.findall(f'.//{SVG NAMESPACE}path'):
path_id = path.get('id'")
if path_id:
paths([path id] = path
return paths, tree

def calculate bounding box(path):

LIRIRT]

Berechnet die Bounding Box eines Pfades anhand seiner 'd'-Attribute.
d_attr = path.get('d")

coords = list (map(float, re.findall (r"-2\d+\.2\d*", d attr)))

[::2]

y_coords = coords[l::2]

X coords = coords
return min(x_coords), max(x_coords), min(y_coords), max(y_coords)

def path in bounding box(path, bbox):

LIRIRT]

Vereinfachte Uberpriifung, ob ein Knotenpunkt eines Pfades innerhalb einer gegebenen Bounding Box liegt.
d attr = path.get('d")

Extrahiere den ersten Koordinatenpunkt

coords = list (map(float, re.findall (r"-2\d+\.?\d*", d attr)[:2]))

%, y = coords[0], coords[1l]

return bbox[0] <= x <= bbox[1l] and bbox[2] <= y <= bbox[3]

def create svg with custom viewbox (paths, bbox, file name):

[IRINT]

Erstellt eine neue SVG-Datei mit den gegebenen Pfaden und einer angepassten viewBox.
viewBox value = f"{bbox[0]} {bbox[2]} {bbox[l]-bbox[0]} {bbox[3]-bbox[2]}"
svg root = ET.Element ('svg', attrib={

'xmlns:svg': "http://www.w3.0rg/2000/svg",

'version': "1.1",

26

'width': "12mm",
'height': "12mm",
'viewBox': viewBox_ value
})
for path in paths:
svg_root.append (path)
tree = ET.ElementTree (svg_root)
tree.write(file name, encoding="utf-8", xml declaration=True)

with open(original file name, 'r') as file:
svg_content = file.read()

paths, original tree = extract paths(svg content)

for path_id in range(1l, 64):

main path id = f'path{path id}"

main path = paths.get(main path id)

if main _path is None:

continue

bbox = calculate bounding box(main path)

Uberpriifung fiir die Zugehérigkeit basiert nun darauf, ob ein Punkt innerhalb der Bounding Box liegt

included paths = [main path] + [path for pid, path in paths.items() if pid != main path id and
path_in bounding box (path, bbox)]

new_file name = f"MH{path id:02}.svg"
create svg with custom viewbox (included paths, bbox, new file name)

print ("SVG-Dateien wurden erstellt.")

27

Maulwurfshiigel_parametrisieren.py
(‘parameterise_molehills.py’)

This script can be used to ‘parameterise’ the SVG files of the 63 molehills. This means that various values for colours and stroke widths are replaced
by variables (‘parameters’), the content of which can then be controlled by QGIS. Beforehand, a backup copy of the existing hill files is created in a
subdirectory called “alto1” or similar.

This script is also executed by simply double-clicking under Windows, whereby it must be located in the same directory as the 63 hill files. Please
note that it is not suitable for ‘reparameterising’ parameterised molehill files —the search-and-replace routines of this script are only suited for SVG
files freshly created with the above script “Maulwurfshiigel _zerlegen.py”.

Kommentiert [RP16]: This variable, i.e. the parameter
“param(fill)”, allows the fill colour for the hillside not to
be permanently stored in the SVG file, but to be config-
ured in QGIS. The following specification “#ffffff” for
white only serves as a fallback.

Kommentiert [RP17]: Opacity of the hill colour. Should
normally be 1 for 100 %.

import glob
import re
import os
import shutil

Funktion, die die spezifischen Ersetzungen in einem gegebenen Text durchfihrt
def replace content (text):

Kommentiert [RP18]: This is the colour for the ex-
tended shadow or semi-shadow, which is located behind
the hatches. In this example it is black, ...

Kommentiert [RP19]: ...but in order to hide it and
make only the hachures visible, its opacity is set to 0.

Kommentiert [RP20]: Colour for lighting the hills from
the west. Should normally be white. Can only be seen if
the hill colour (see above) is darker than white.

Kommentiert [RP21]: Stroke width for the hachures. Is
configured in QGIS together with the stroke width for
the other contours.

Kommentiert [RP22]: Contour colour for the hachures.
Is configured in QGIS together with the stroke width for
the other contours.

Kommentiert [RP23]: Colour of the very dark main
shadow, here black.

Kommentiert [RP24]: Opacity for the main shadow. At-
tention: QGIS thinks this refers to the opacity of the hill
colour (white, see above)! I had to misuse it for the
shadow because the parameterisation options in QGIS
are apparently still inadequate at present.

replacements = {

r'style="fill-rule: evenodd; fill: #e6ebe6; "': r'style="fill-rule: evenodd; fill:baram(fill)]#ffffff; fill-
opacity:[1"', #Grundfarbe

r'style="fill-rule: evenodd; fill: #999999; "': r'style="fill-rule: evenodd; fill:[#OOOOOO; fill-opacity: pﬂj 777777777
#Schatten 2

r'style="fill-rule: evenodd; fill: #ffffff; "': r'style="fill-rule: evenodd; fill:[#ffffffb fill-opacity: 1"',
#Licht

r'style="stroke-width: 0.2160; stroke: #000000; stroke-dasharray: none; stroke-linecap: round; stroke-linejoin:
miter; fill: none; "': r'style:"stroke—width:Faram(outline—width)‘0.25; stroke:@aram(outline)]#OOOOOO; stroke-
dasharray: none; stroke-linecap: round; stroke-linejoin: miter; fill: none"', #Schraffen

r'style="fill-rule: evenodd; fill: #000000; "': r'style="fill-rule: evenodd; fill: HOOOOOO; fill-
opacity:param(fill-opacity)| 1"', # Schatten 1

r'style="stroke-width: 0.3399; stroke: #000000; stroke-dasharray: none; stroke-linecap: round; stroke-linejoin:
round; fill: none; "': r'style="stroke-width:jparam(outline-width)| 0.35; stroke:param(outline)| #000000; stroke-
dasharray: none; stroke-linecap: round; stroke-linejoin: round; fill: none"', #Aubenlinie

r'<path d=" ': r'<path 4d="",

r'; "': x';"',

28

Kommentiert [RP25]: Stroke width for all contours (in-
cluding hachures). The following “0.35” only serves as a
fallback value if nothing else is specified.

Kommentiert [RP26]: Stroke colour for all contours
(including hachures). The following “#000000” for
black only serves as a catch-all value if nothing else is
specified.

r'" />Y: rvll/>l’

for old, new in replacements.items() :
text = re.sub(old, new, text)

return text

Funktion zum Finden des n&dchsten "alt##"-Verzeichnisnamens und dessen Erstellung
def create backup directory(base path):
existing dirs = [d for d in os.listdir(base_path) if os.path.isdir(os.path.join(base path, d)) and
d.startswith('alt"')]
highest num = 0
for d in existing dirs:
try:
num = int(d[3:])
highest num = max(highest num, num)
except ValueError:
continue # Falls das Verzeichnis nicht der erwarteten Benennung folgt, ignorieren

Nachsten Verzeichnisnamen festlegen und Verzeichnis erstellen
next dir name = f'alt{highest num + 1:02d}'

next dir path = os.path.join (base path, next dir name)
os.makedirs (next dir path, exist ok=True)

return next dir path

Funktion zum Kopieren der SVG-Dateien ins Sicherungsverzeichnis und Durchfithren der Ersetzungen
def backup_and update svgs(directory, backup directory):

for 1 in range(l, 64): # Fir MHOl.svg bis MH63.svg
file name = f£'MH{i:02d}.svg'
file path = os.path.join(directory, file name)

if os.path.exists(file path):
Datei ins Sicherungsverzeichnis kopieren

29

Kommentiert [RP27]: This and the following code en-
sure that all existing hill files are archived in a subdirec-
tory called "alto1" (or "alto2" if already present, etc.).

shutil.copy(file path, backup directory)

Datei 6ffnen, lesen und Ersetzungen durchfiihren

with open(file path, 'r', encoding='utf-8') as file:
content = file.read()

updated content = replace_content (content)

Geédnderten Inhalt zuriickschreiben

with open(file path, 'w', encoding='utf-8') as file:

file.write (updated content)

Hauptskript

def main():

os.getcwd ()

create backup directory(current directory)

current directory =
backup_directory =
backup and update svgs(current directory, backup directory)

Den Aufruf der Hauptfunktion aktivieren,
main ()

Dieses Skript enthdlt alle notwendigen Funktionen und Schritte,
gleichzeitig eine Sicherungskopie der Originaldateien anzulegen.

um das Skript auszufihren

um die angeforderten Ersetzungen durchzufithren und

30

